HELLER

Operator Information

Integrated Process Monitoring IPM, SINUMERIK 840D sl

BI.000225-EN-03

Contract data	
Designation	Machining centre
Machine type	Integrated Process Monitoring IPM,
Control	SINUMERIK 840D sl

HELLER

Gebr. HELLER Maschinenfabrik GmbH

Postfach 14 28 D-72604 Nürtingen

Neuffener Straße 54 D-72622 Nürtingen

Telefon: +49-(0)70 22-77-0 Telefax: +49-(0)70 22-77-610 E-Mail: sales@hnt.heller-machines.com Internet: http://www.heller-machinetools.com

© Gebr. HELLER Maschinenfabrik GmbH

This manual and the software described herein are protected by copyright.

All rights to this documentation, in particular the right of reproduction and dissemination and of translation remain with Gebr. HELLER Maschinenfabrik GmbH, also in the event of applications for industrial property rights. No part of this document may be processed, reproduced or transmitted in any form or by any means, electronic or mechanical, without prior permission in writing from Gebr. HELLER Maschinenfabrik GmbH.

Errors excepted. Subject to change for technical reasons without notice.

Gebr. HELLER Maschinenfabrik GmbH shall not be held liable for any errors contained in this document. Liability for any direct or indirect damages that may arise in connection with the delivery or use of this document shall be precluded in so far as this is permissible by law. Furthermore, Gebr. HELLER Maschinenfabrik GmbH cannot be held liable for any damages resulting from the infringement of patents and other rights belonging to third parties. We hereby point out expressly that the current state of technology does not enable computer programs to be developed in such a way that they will run free of errors in every single application and combination. The functionality of the machine is restricted to the functions that are described in the associated technical documentation.

Operator Information	2013-01-28
Integrated Process Monitoring IPM, SINUMERIK 840D sl	BI.000225-EN-03

4

Contents

1	Integrated Process Monitoring IPM (option)	8
1.1	Scope of the Operator Information	8
1.2	Integrated Process Monitoring IPM (option)	9
1.2.1	Introduction	9
1.2.2	Calling up Integrated Process Monitoring (IPM)	9
1.2.2.1	Displaying monitoring data	12
1.2.2.2	Reset maximum values	14
1.2.3	Monitoring methods	14
1.2.3.1	Calling up the "Monitoring methods" window	15
1.2.3.2	Description of monitoring method elements	16
1.2.3.3	Create new methods	23
1.2.3.4	Changing the method	26
1.2.3.5	Copying method	27
1.2.3.6	Delete method	28
1.2.4	Importing/exporting methods	28
1.2.4.1	General	28
1.2.4.2	Export methods data	29
1.2.4.3	Importing methods data	32
1.2.5	Assigning monitoring methods to a tool	34
1.2.5.1	General	34
1.2.5.2	Assigning monitoring methods	35
1.2.6	Programming the integrated process monitoring system	36
1.2.6.1	Syntax of programming instructions	36
1.2.6.2	Controlling monitoring via synchronous actions	51
1.2.6.3	Alternative Strategy (option)	51
1.2.6.4	Programming example	53
1.2.6.5	Generating a log file	54
1.2.6.6	Control override (from IPM1.2/9)	55
1.2.6.7	Alarm signals	57

	Operator Information	2013-01-28
6	Integrated Process Monitoring IPM, SINUMERIK 840D sl	BI.000225-EN-03

HELLER

CHAPTER 1

Integrated Process Monitoring IPM (option)

1 Integrated Process Monitoring IPM (option)

1.1 Scope of the Operator Information

Operator Information	This Operator Information supplements the Operator Manual and the Programming Instructions. It describes how to operate the "Integrated Process Monitoring" option.
Intended readership	The Operator Information is intended for the user (owner), the programmer and for the machine operator. It must be made available to this group of persons.

	Operator Information	2013-01-28
8	Integrated Process Monitoring IPM, SINUMERIK 840D sl	BI.000225-EN-03

i

1.2 Integrated Process Monitoring IPM (option)

The Integrated Process Monitoring (IPM) is based in part on the work of the Qwt project.

1.2.1 Introduction

Standard procedure	The existing monitoring procedures disable a fitted tool if the actual monitored values of a cutting tip exceed their limit values. Possible limit values include maximum tool life, number of items or a maximum value for entering the tool length wear. The real tool condition cannot however be detected.
Integrated Process Moni- toring (IPM)	Integrated Process Monitoring (IPM) is a dynamic addition to the existing standard procedure in connection with tool management.
Monitoring methods	IPM allows you to detect tool overloads early, thereby avoiding tool fracture and all the consequential damage to machine and tool. To achieve this aim, the IPM area, with which freely parameterisable monitoring methods can be generated, has been developed.
Sensors	The signal sources - also known as sensors - are the digital drive technology variables: setpoint torque value, actual current value, effective power, feed force, axial and radial force. Drive signals are subject to a signal adjustment, the acceleration, friction and stoppage forces being eliminated so that the actual processing variable is available.
Tool-specific monitoring	In a subsequent step, the specified monitoring methods must be assigned to the real tools (cutting tips) of the machine. This assignment takes place within the parameter / tool wear area.

1.2.2 Calling up Integrated Process Monitoring (IPM)

☑ Call up the machine's basic menu using the *Data menu key*.

- ☑ Press the *etc.* key.
- ✤ The "IPM" softkey is displayed.

IPM	
\sum	\square

☑ Press the "IPM" softkey.

- ✤ The "IPM" basic screen is opened.
- ✤ The "Active NC data" are displayed.

Deta	ails	
\sum		\square

- ☑ To show a numerical display for a graphic illustration of the sensor values, press the "Details" softkey.
- ✤ The following values are shown in the numerical display:
 - Upper limit
 - Maximum value
 - Minimum value
 - Sensor value
 - Lower limit
 - Block average

i

You can control the display of the individual values in the curve by selecting and deselecting the corresponding checkboxes.

Selecting monitoring	events
Settings	The events to be monitored can be activated in the "Settings" window area of the basic display: - Tool break (with cutting and missing monitoring) - Tool overload (with blunt monitoring)
	For the monitoring operation, at least one event must be selected via the check field (tick).
	☑ The machining program stops.
	☑ The "IPM" basic display is opened.
Settings	 Press the "Settings" softkey. The "Settings" window area in the basic display opens. The check fields show the current monitoring mode, e.g.: Break monitoring activated. Cutting monitoring deactivated. Overload monitoring deactivated.
	Settings Break monitoring active Cutting monitoring active Overload monitoring active

Activating further monitoring events

- $\ensuremath{\boxdot}$ The "fracture monitoring active" line is highlighted.
- ⊠ Move the highlight to the "overload monitoring active" using the *Cursor keys*.
- ⊠ Press the *Highlight* key.
- ✤ A tick will appear in the check field to confirm.

2013-01-28	Operator Information
BI.000225-EN-03	Integrated Process Monitoring IPM, SINUMERIK 840D sl

i

Setting	gs	
	Break monitoring active	
	Cutting monitoring active	
\square	Overload monitoring active	

During subsequent machining operations, the tool is also monitored for overload situations.

Active cutting monitoring:

Cutting monitoring involves the lower limit of a break method being recorded. This ensures that a missing or broken tool is detected. Since cutting monitoring is a sub-function of break monitoring, it remains ineffective even when tool monitoring is switched off.

1.2.2.1 Displaying monitoring data

1 spindle - 2 monitoring methods	A maximum of two monitoring methods per tool cutting tip can be recorded and displayed: - Break method and - overload method.
	The monitoring data for the two methods can be displayed alternately on the screen.
Depiction	The monitoring data for the current tool are displayed in graphical form in the window area.
	The displayed method can contain a maximum of two tasks. In this case, two curves are displayed. The colour of the display alternates between yellow (display only) and green (alarm reaction active).
	Pressing the "Details" softkey shows a numerical display for the graphic display.
	Display monitoring data for method 1 (break method)
Preconditions	A break method in the tool management system has been assigned to the current tool.
	The machine is in Automatic Mode. The current NC block runs with the tool to be monitored.

	Operator Information	2013-01-28
12	Integrated Process Monitoring IPM, SINUMERIK 840D sl	BI.000225-EN-03

 \square The "IPM" basic display is opened.

- Activate break monitoring in the "Settings" window are of the basic screen.
- A maximum of two monitoring curves are displayed. The curves contain the following data:
 - Header: Monitoring method code with methods identification
 - Red line: top or bottom monitoring limit
 - Blue line: Minimum and/or maximum value
 - Green curve: Current sensor value

The maximum and the minimum of the current monitoring signal is denoted by the blue line. The minimum has a special function for the "fixed limit" process:

The value follows the current value and is "frozen" for recording the monitoring time of the cutting monitoring operating.

If the minimum value (blue) overruns or underruns the monitoring limit (red) during the recording period and/or at the recording time, an appropriate alarm response is triggered, if activated.

If the function is switched off, the displayed curve disappears from the time signal diagram.

Switching over to Method 2 (overload method)

- An overload method in the tool management system has been assigned to the current tool.
- \boxtimes Press the "Method 1<=>2" softkey.
- Data from Monitoring Method 2 are superimposed. The diagram for the overload method is shown instead of Method 1.

If the "1<=>2 Method" softkey is pressed alternately, the monitoring results of both methods are displayed in rotation (toggle function). The detailed display is also switched.

1

Precondition

Method 1<=>2

1.2.2.2 Reset maximum values

It is often necessary to reset the maximum monitoring value, e.g.

- whilst an unknown tool is being recorded for the first time
- during severe interference
- Press the "Reset maxima" softkey.
 The indicator of the displayed monitoring method skips to the current monitoring value.

1.2.3 Monitoring methods

General		
Monitoring method	A monitoring method forms the basic unit for executing the tool monitoring system. The methods editor can be found in the integrated process monitoring IPM main menu This editor contains all the information required for a monitoring event. The required signals, processes, tasks and operations must be specified.	
Methods Editor	In the methods editor, the events to be monitored must be defined, whereby these can be recorded individually or in parallel.	
Fracture and overload methods	Two monitoring methods can be assigned to each cutting edge. This enables a fracture event and an overload event to be recorded simultaneously. Two monitoring tasks per method can be defined, which are distinguished in terms of sensor, process, and evaluation algorithm etc.	
	Tool T "Drill HSS 20mm" .2. D1	
	Method 1 (break)Method 2 (overload)"Methods" levelTask 1.1Task 1.2Task 2.1Task 2.2"Task 2.2Break ABreak BOverload AOverload B"Tasks" level	
Method templates	Default methods that are already completely parameterised can be requested for standard tool types. If you want to monitor similar tools, it is advisable to use the copy of a default method, which can be adapted to suit current conditions without the need for extensive editing.	

Method templates	Default methods that are already complete requested for standard tool types. If you w it is advisable to use the copy of a default adapted to suit current conditions without editing.	etely parameterised can be vant to monitor similar tools, It method, which can be t the need for extensive
	Operator Information	2013-01-28

Integrated Process Monitoring IPM, SINUMERIK 840D sl

BI.000225-EN-03

Res	et m	axima
\sum		\Box

1.2.3.1 Calling up the "Monitoring methods" window

Methods selection	The methods previously created are displayed in "Monitoring methods" on the left side of the window. Methods are clearly identified by their name and ID number.
	The method ID number is of prime importance for internal control purposes.
	Each of these is tagged with a coloured symbol to enable a quick distinction between break and overload method: - Break method: Red setsquare. - Overload method: Yellow setsquare.
	To display further information and the tasks created for a monitoring method, you must select a monitoring method from the table using the cursor keys. The information will then be displayed on the right side of the window.
Preconditions	☑ The basic screen "Integrated Process Monitoring (IPM)" is open.
Methods	☑ Press the "Methods" softkey.

✤ The "Monitoring methods" window opens.

		→	PLC]
Mor	itorina met	thods	Metho	d				ітроπ
ine/	I.D.	Name	I.D.	1002	General mil	ling cutter, break		
	1000	Drill, break	Even	t		Break	\sim	Export
۸	1001	Drill, overload	Alarm	n response	NC stop, r	ead out alternative strates	y v	
۸	1002	Milling cutter general, break						
∧	1003	Milling cutter general Overload	Task	1				Copying
			\square	Task ac	ive			
			Sens	sor:	Spindle pov	ver		New method
			Sens	or location:	M_C1			
			Trave	erse:	sliding aver	age, fixed limit		Delete method
			Task	2				Changing
			\checkmark	Task ac	ive			the method
			Sens	sor:	Radial force	•		
			Sens	or location:				
occi	upied: 4, ui	noccupied: 96	Trave	erse:	sliding aver	age, fixed limit		
		· · · · · · · · ·]
		Active method						

1.2.3.2 Description of monitoring method elements

Methods		
	The following input fields are ava - ID and name - Event - Alarm response	ailable for defining the methods:
ID and name	The system automatically sugge You can define any method nam method.	ests the next free ID. ne. This is used to identify the
Event, alarm response	The event determines the monitoring task. An alarm response is permanently assigned, depending on the event you have select	
	Event	Alarm response
	deactivated	-
	The method is not active	

Break The monitoring task is the break method.	Enable NC stop and/or alternative strategy When a break alarm occurs, all axes are stopped. The "alternative strategy" option is selected if present.
Overload	Disable tool
The monitoring task is the overload method.	When an overload alarm occurs, the affected tool is set to "disabled" at the next tool change.

Tasks	
	A maximum of two tasks can be defined for each method. The following input fields are available:
Task active	For check field is used for switching the current monitoring task off and on.
Sensor Sensor location	All sensors available for parameterising the task are offered in a selection list: - Torque (Nm) - Current (amps) - Spindle power (KW) - Feed force (kN) - Radial force (kN) - On G17: X/Y force component - On G18: Z/X force component - On G19: Y/Z force component - Axial force (kN) - On G17: Z force component - On G18: Y force component - On G18: Y force component - On G19: X force component - On G19: X force component - On G19: X force component
	Process
	The following signal processes are available for parametising the tasks:
Current value, fixed limit	The signal is directly compared to a fixed upper and lower limit, without further filtering.
	Parameters: - Upper limit - Lower limit

2013-01-28	Operator Information
BI.000225-EN-03	Integrated Process Monitoring IPM, SINUMERIK 840D sl

Sliding average, fixed limit	The signal is averaged by the sliding method in which the old average and the current measured value are linked to form a new average. The mean is compared to a fixed upper and lower limit. This method has a smoothing effect, if the sensor mean factor is greater than 1.
	Parameters: - Upper limit - Lower limit - Average factor for sensor
Current value, live thresh- old	The signal is averaged by the sliding method in which the old average and the current sensor value are linked to form a new average.
	This averaged value is used to derive the upper and lower limits values (thresholds), with which the unsmoothed signal is compared. The method is suitable only for detecting fractures.
	Parameters: - Upper limit - Lower limit - Average factor for sensor
Sliding average, fixed limit + missing/blunt	The signal is averaged by the sliding method in which the old average and the current sensor value are linked to form a new average. The average thus determined is then compared to a fixed upper and lower limit. This method has a smoothing effect if the "Average factor sensor" parameter is greater than 1.
	"Blunt" and "missing" statuses can also be monitored.
	"Blunt" monitoring: Blunt (worn) tools can easily be detected in combination with the overload method. This is done by comparing the block average of the sensor signal to a top blunt threshold (parameter: missing or blunt limit). The limit must be determined empirically. This is done by comparing the block average of the sensor signal to a top blunt threshold (parameter: missing or blunt limit). The limit must be determined empirically. This is done by comparing the block average of the sensor signal to a top blunt threshold (parameter: missing or blunt limit). The limit must be determined empirically.
	"Missing" monitoring: Missing tools can be effectively detected (similar to cutting monitoring) if the process is combined with the break method. This is done by comparing the block average of the sensor signal to a bottom missing threshold (parameter: missing or blunt limit). The limit must be determined empirically.

	Parameters: - Upper limit - Lower limit - Average factor for sensor - Missing and/or blunt limit
	Unless CS_IPMCO is called up, the "Incorrect or impassive limit" parameter has no effect.
Sliding average, live threshold	This process is similar to the "Current value, live threshold" process although in this case, the monitoring signal is pre-filtered. Both the parameters for the live threshold and also an "Average factor for sensor" parameter must be defined for noise suppression.
	Parameters: - Tolerance - Switching point - Average factor for threshold - Average factor for sensor
Control override without Alarm	This method controls the path override within the permitted limits until the sensor signal reaches its setpoint value.
	Parameters: - Upper override limit - Lower override limit - Setpoint value
Control override with Alarm	This method controls the path override within the permitted limits until the sensor signal reaches its setpoint value. If during the control operation, the lower override limit is reached, an alarm is generated.
	Parameters: - Upper override limit - Lower override limit - Setpoint value
	Input/activation
	The following parameters can be selected for defining and scaling the monitoring diagrams: Depending on the type of process, only the sub-quantity of the parameter is available.

Upper limit	For the "actual value, fixed limit" and "sliding average, fixed limit" process (+ missing/blunt)" If the current value exceeds the upper limit, an alarm reaction is produced.
	The upper limit must firstly be determined empirically through a test cut.Unit dependent on current sensorFloating point number
Lower limit	For the "current value, fixed limit" and "sliding average, fixed limit (+missing/blunt)" processes in combination with the break method. If at the time of cutting monitoring (programming command CS_IPMCO), the current value falls below the lower limit, an alarm response is triggered.
	The lower limit must firstly be determined empirically through a test cut.Unit dependent on current sensorFloating point number
Average factor for sensor, average factor for thresh- old	 Average factors must be defined for processes based on "Sliding average" and/or "Live threshold": Average factor sensor: For sliding average Average factor threshold: for live threshold
	 The signal or the thresholds can be steadied (smoothed) using the average factor. In principle: The higher the value, the greater the filter effect. Typical value: 5 Integer: (1 2³¹)
	 The display is steadied on the following settings: If processes based on "Fixed limit" involve the "Average factor for sensor" being increased. If processes based on "Live threshold" involve the "Average factor for sensor" being increased and/or the "Average factor for threshold" being reduced.
Tolerance [%]	Provided for the process - "current value, live threshold" and - "sliding average, live threshold".
	An alarm reaction is generated.
	If the current value and sliding average for the sensor signal overruns or underruns the thresholds derived from the tolerance value

respectively, an alarm response is triggered. (Determination: See notes on "upper, lower threshold".)

The value for the tolerance input depends particularly on the machining process (rough or fine machining). If working with a lower average factor, a narrower tolerance range can also be selected. This enables the derived thresholds (upper and lower limit) to track the current value more quickly.

For unknown sensor behaviour, it is always advisable to make a test cut.

- Typical value: 25
- Unit %
- Integer

Switching point abs/% tol. For the process based on "Live threshold".

The value assigned to the switching point is the sensor value determined from a test cut.

Depending on the level of the current sensor value, the upper and lower threshold values are determined in various ways.

- If the current sliding average is smaller than the switching point, a fixed tolerance hose is used. The upper and lower thresholds are calculated as percentages relative to the switching point.
- If the current sliding average is greater than the switching point, a variable tolerance hose is used. The upper and lower thresholds are calculated as percentages relative to the sliding average.

The graph below shows the detailed correlations.

sensor signal at the specified setpoint value and as a minimum up to this limit.

- Unit dependent on current sensor
- Floating point number

With the "Control OVR with alarm" method, an alarm is generated when this limit is reached.

Upper, lower threshold

1

1

Sliding average value is **less** than the switching point:

Upper threshold = sliding average + switching point x tolerance

Upper threshold = sliding average + switching point x tolerance

Sliding average is greater than the switching point:

Upper threshold = sliding average x (1 + tolerance)

Lower threshold = sliding average x (1 - tolerance)

Keyword "fixed limit"

Absolute fixed limit values are defined to a basic value around the monitoring signal. These limits can be used both for the fracture and also the overload. Fixed limits represent absolute tool protection.

Keyword "live threshold".

The monitoring limits are permanently determined and constantly carried from the processing signal and the tolerance value definition. For the evaluation, the change speed of the signal is used rather than its absolute level. The process is particularly suitable for detecting fast signal changes and therefore for the fracture method. By contrast, the process is excluded from the overload method (wearing diagram), since the absolute signal height is significant.

1.2.3.3 Create new methods

In order to create a new method, you may select a similar method from a set of templates and edit this as required or select an empty template and fill in the input fields in succession.

The procedure for filling in an empty template is described below.

2013-01-28	Operator Information
BI.000225-EN-03	Integrated Process Monitoring IPM, SINUMERIK 840D sl

Precondition

 \square The "monitoring methods" window is opened.

New	/ me	thod
\Box		\square

- ☑ Press the "New method" softkey.
- ✤ The "Select template" window is opened.

E	PLC				
Select templates	Method				
	I.D. 0	Blank method			
Blank method	Event		deactivated	\sim	
- 8	Alarm response			\sim	
Diameter>10,	Task 1				
Diameter>10,	Task activ	ve			
Diameter>10,					
	Sensor:				
Milling cutter general.	Sensor location:				
Milling cutter general.					
Milling cutter, path mode	Traverse:				
Milling cutter, path mode	• · · · · ·		i.	· · · · ·	
	Task 2				
₩	Task acti	ve			
Countersinking tool,					
Countersinking tool,	Sensor:				Abort
	Sensor location:				
Threads, break					ок
Threads, overload	Traverse:				
	······		:		

Select the "empty methods" entry in the explorer structure of the left window section using the *Cursor keys*.

To use a template, select the entry required using the Cursor keys.

☑ Press the "Ok" softkey.

✤ The methods editor is opened.

Defining methods	
Precondition	✓ The methods editor is opened and the cursor is in the "ID" input field.

i⊲———i TAB	⊠ Press the <i>Tab</i> key.
	 The suggested ID is accepted. The cursor moves to the next input field.
i	If necessary, you can change the ID using the alphanumeric keys. The ID starts at 1000 and can be a maximum of 9999999999.
^ĸ 1 ^L 2	☑ Enter any method name using the <i>Alphanumeric keys</i> .
i≪————————————————————————————————————	⊠ Press the <i>Tab</i> key.
	🔄 The cursor moves to the "Event" input field.
\mathbf{i}	Press the <i>Insert</i> key. The selection menu containing the possible events opens.
↑ ↓	Select the required event using the <i>Cursor keys</i> .
•>	 Press the <i>Enter</i> key. Enter the selected event and the corresponding alarm response.
Defining tasks	
Fask 1	Press the "Task 1" softkey. The input window for defining task 1 is opened.
	🔄 The "Task active" checkbox is selected.
\bigcirc	☑ Press the <i>Highlight</i> to activate the task.
	✤ A tick appears in the checkbox.
Γ	Start repeat edit of the input fields.
TAB	☑ Press the <i>Tab</i> key.
	✤ The next input field is selected.

Ok

- ☑ Press the "Change method" softkey.
 - ✤ The methods editor is opened.

For handling the method editor, see from Section "Defining methods" **page 24**

☑ Once you have made all changes, press the "Ok" softkey.

1.2.3.5 Copying method

_ ..

...

To create similar monitoring methods, it makes sense to copy and change an existing method as required.

••

...

Precondition

×	Use the Cursor keys in the "Monitoring methods"	' window to	select
	the methods you wish to copy.		

Сор	y	me	ethod	
\sum				

☑ Press the "Copy method" softkey.

.

- ⅍ The copied method is displayed and selected in the "Monitoring methods" window.
- ✤ The method name is prefixed with the symbol "~"

☑ The "monitoring methods" window is opened.

Cha	nge	method
\Box		\square

☑ Press the "Change method" softkey.

✤ The methods editor is opened.

For handling the method editor, see from Section "Defining methods" **page 24**

Ok

- ☑ Once you have made all changes, press the "Ok" softkey.
- 2013-01-28Operator InformationBI.000225-EN-03Integrated Process Monitoring IPM, SINUMERIK 840D sl

1.2.3.6 Delete method

Any monitoring methods that are no longer required can be deleted.

Precondition

Delete method

☑ Use the *Cursor keys* in the "Monitoring methods" window to select the methods you wish to delete.

Press the "Delete method" softkey.
 The monitoring method and associated tasks will be deleted.

☑ The "monitoring methods" window is opened.

,

There is the option of selecting several methods for deletion, see "Selecting methods" **page 30**

1.2.4 Importing/exporting methods

1.2.4.1 General

Import function	The import function can be employed to allow methods data from external databases to be used. The required data must be supplied via USB stick. It is also possible to import data from machines with "Siemens 840D powerline" control.
i	 Error handling during import operation: A syntax error in the import file will abort the import. If an error occurs during data transfer, the next file in line will be imported. An alarm message is also output.
Export function	Conversely, methods data can be provided by the IPM data base using the export function and loaded into databases on other machines.
	Attention: Data exported from machines with "Siemens 840D solution line" control can only be imported to machines with the same control.

Methods ID	Methods are stored in the database under a Methods ID. This ID is generated automatically when a new method is created. The system automatically increments the ID under which the method was stored in the database. User-specific methods have IDs from 1000 onwards. A methods data record that already exists in the "IPM" menu is overwritten by an import procedure if the imported data record has the same methods ID. When imported, a methods data record is automatically created and sorted if there was no previously existing data record with this methods identity.
<u>/ • </u>	machine to another, methods must generally be produced on one machine only (master) from which they can then be exported. Failure to observe this instruction may result in existing methods on other machines being overwritten. Another alternative is defining unique Method IDs in the Methods Editor.
Import target	All imported data are stored in the IPM data base (definition data SGUD.DEF in SGUD area DEF.DIR).
Methods import of active tools	Methods data of tools that are already located in the magazine can be imported. The existing data record will be overwritten during the import operation.
Methods file	The methods files are stored as text files. The extension *.mtd. identifies the files.
minutes	A log showing any errors is created for each import or export operation.
USB interface	The USB interface is located on the main control panel, to the right on the operating panel for control functions.
Local drive	Import and export functions can also be used for the local drive. The data is stored in a specified directory on the local drive.

1.2.4.2 Export methods data

Precondition If The "monitoring methods" window is opened.

2013-01-28	Operator Information
BI.000225-EN-03	Integrated Process Monitoring IPM, SINUMERIK 840D sl

Refer to "Calling up the "Monitoring methods" window" page 15

Selecting methods

Select individual methods

☑ Use the *Cursor keys* in the "Monitoring methods" window to select the methods you wish to export.

Arbitrary selection of individual methods

C	٢L	
_		

CTRL

☑ Press the *CTRL* key and hold down.

- ☑ Use the *Pointer (Mouse)* to point to the required method and select using the *left mouse key*.
 - Select further methods using the *mouse*.
- Once you have selected all the methods you require, release the CTRL key.

Selecting consecutive methods

- ☑ Once you have selected all the methods you require, release the *Shift* key.

Exporting methods

 $\sum \sum$

- ☑ Press the "Export" softkey.
- ✤ The "Export" window, "Order" tab is opened.

Expor	t				
Job		minutes	一 一		
	All metho	ds			
\odot	Airmeuro	40			

TAB

 $\langle \rangle$

H**≺** TAB

Ì

TAB

к 1

^L 2

	O Selected methods	
	Target	
	Local drive	
	Name Size Typ	e Date
	1020.mtd 2 KB mtd	File 2008-01-12 10:56:17
	1024.mtd 8 KB mtd	File 2007-11-23 15:13:12
	All.mtd 12 KB mtd	File 2007-12-18 14:56:43
	File name: All-new.mtd	
	File type	*.mtd
×] Press the <i>Tab</i> key to select which me	ethods are to be exported.
	- All methods: All methods: "Monito	nods displayed in the pring methods" window.
	- Selected methods: The me "Monito	thods selected in the pring methods" window.
\boxtimes] Press the <i>Insert</i> key.	
\mathbf{k}	The methods selection is confirmed.	
\mathbf{X}	Press the <i>Tab</i> key until the cursor is selection.	in the input field for the drive
X V] Press the <i>Insert</i> key. ▹ The selection menu containing the p	ossible drives opens.
X	Select the local drive using the Curs	or keys.
\boxtimes] Press the <i>Enter</i> key.	
ц. К	The selected drive is entered.	od
\diamond	The contents of the drive are display	eu.
\mathbf{X}] Press <i>Tab</i> to select the "File name" i	nput field.
] Use the <i>Alphanumeric keys</i> to enter exported methods are to be saved to	the file name under which the the data carrier.
	Entered incorrect data? You wish to	abort the export operation.
X	Confirm by pressing the "Escape" so window and abort the operation.	ftkey to close the "Export"

Ok	
\Box	\Box

Press the "Ok" softkey.

- ✤ The data export is started.
- A file with an .mtd extension is created, in which all exported methods are contained.
- Once the data export operation is complete, the "Export" window and "Log" tab are opened.

Export			
Job		minutes	
	Number of Number	nisned of exported methods: 11 of non-exported methods: 1	
	I.D.	Name	
9	1020	Drill D>10	
9	1021	Face milling cutter	
9	1022	2 Drill D>20	
9	1023	Milling cutter	
8	1024	Milling cutter, path mode	
9	1025	Countersinking tool 1	\checkmark
1022	: Method i	imported	

- The "Log" tab shows which methods have been successfully exported:
 - green Successfully imported
 - 😮 red Not imported

Precondition

- \blacksquare The file to be imported is on the data carrier.
- \square The "monitoring methods" window is opened.

Refer to "Calling up the "Monitoring methods" window" page 15

Import

☑ Press the "Import" softkey.

✤ The "Import" window, "Order" tab is opened.

Import						
Job	minutes	7				
Source	Э					
			USB			$] \lor $
Name			Size	Туре	Date	
	1020.mtd		2 KB	mtd File	2008-01-12 10:56:17	
	1024.mtd		8 KB	mtd File	2007-11-23 15:13:12	
	All-new.mtd		12 KB	mtd File	2007-12-18 14:56:43	
File name:		All-new.r	ntd			
File type				*.mtd		

Actual display may differ.

- ☑ Press the *Tab* key until the cursor is in the input field for the drive selection.
- ⊠ Press the *Insert* key.
- ✤ The selection menu containing the possible drives opens.
- ☑ Use the *Cursor keys* to select the drive containing the file to be imported.
- \boxtimes Press the *Enter* key.
- ✤ The selected drive is entered.
- ✤ The contents of the drive are displayed.
- ☑ Use the *Cursor keys* to select the file that is to be imported into the IPM database.
- ✤ The file name is accepted into the "File name" field.

Entered incorrect data? You wish to abort the import operation.

Confirm by pressing the "Escape" softkey to close the "Import" window and abort the operation.

Ok

- ☑ Press the "Ok" softkey.
- ✤ The import operation is started.
- Once the data import operation is complete, the "Import" window and "Log" tab are opened.

2013-01-28	Operator Information
BI.000225-EN-03	Integrated Process Monitoring IPM, SINUMERIK 840D sl

Γ

Job		minutes				
	Import fin	ished				
	Number o	of imported metho of non-imported r	nethods: 1			
	I.D.			Name		
8	1020	Drill D>10				
8	1021	Face milling cut	er			
<u> </u>	1022	Drill D>20				
0	1023	Milling cutter				
8	1024	Milling cutter, pa	th mode			
	1025	Countersinking t	ool 1			

- The "Log" tab shows which methods have been successfully exported:
 - green Successfully imported
 - o yellow Successfully imported, existing methods overwritten.
 - 🔉 red Not imported

☑ Press the "Ok" softkey again to complete the import operation.

\sum

1.2.5.1	General
Input window	In a subsequent step, the specified monitoring methods are assigned to the real tools of the machine. The monitoring methods in the "Tool wear" list can be assigned.
	The "tool wear" list is available from the "Parameters" menu.
User-specific methods (> 1000)	A method is assigned by entering the corresponding method ID. This means, the user-specific methods in the address range > 1000 can be assigned.
Assignment per tool	In the "Tool wear" list, the monitoring methods must be individually assigned for each tool. A maximum of two monitoring methods can be assigned to each tool.

1.2.5.2 Assigning monitoring methods

- ☑ Corresponding monitoring methods are created in the "IPM" area.
- ☑ The tool is created with all tool data.
 - See Operator Manual, "Tool management system", 'Tool data' menu" section.

Opening the "Tool wear" list

Press Data menu key to call-up the machine's basic menu.

Para	amet	er
\sum		\square

Tool wear

×	Press the "Parameter" softkey.
勢	The "Tool" area is opened.

- ☑ Press the "Tool wear" softkey.
- ✤ The "Tool wear list" is opened.

ΓοοΙ	wear								Chain 80	
	wear								onan_oo	
Loc.	Туре	Tool name	DP	D	\triangle Length 1	△ Radius	T C	IPM	1 IPM2	
		Milling cutter	1	1	-0.422	0.000		1022	1023	
3		Drill	1	1	0.000			1045	1046	
ł		Milling cutter xx	1	1	-1,148	-0.2				
5										
ò										
7										
										Reactivate
			-						<u>.</u>	
fool li	et	Move tool	Mitor	~	Magazine	Move ze	ro	Variable		Sotting da

Actual display may differ.

- ☑ Use the *Cursor keys* to select the "IPM1" column of the tool to which a monitoring method is to be assigned.
- ☑ Use the *Alphanumeric keys* to enter the methods ID of the required monitoring method.
- ☑ Press the *Cursor keys* to select column "IPM2" and assign a further monitoring method if necessary.
- 1.2.6 Programming the integrated process monitoring system

1.2.6.1 Syntax of programming instructions

System cycles, language commands	A series of system cycles (CS_IPM) are available that enables Integrated Process Monitoring (IPM) to be controlled from the NC program. Once the monitoring method, which becomes effective with the too change cycle, has been called up, your data can be changed, if necessary, through special language commands (CS_IPM) so that they specifically matches the machining process. These block- related changes do not affect the tool-related data which have been specified during tool assignment. Block-related data is rejected after the next tool change and replaced by the tool-related data. The following system cycles and corresponding language	
	commands are availa	
	System cycle	DIE: Explanation
	System cycle Cs_IPMON()	DIE: Explanation Enable process monitoring
	System cycle Cs_IPMON() Cs_IPMOF()	DIE: Explanation Enable process monitoring Disable process monitoring.
	System cycle CS_IPMON() CS_IPMOF() CS_IPMMW()	DIE: Explanation Enable process monitoring Disable process monitoring. Write current monitoring data.
	System cycle Cs_IPMON() Cs_IPMOF() Cs_IPMMW() Cs_IPMMR()	Explanation Enable process monitoring Disable process monitoring. Write current monitoring data. Read current monitoring data.

	Operator Information	2013-01-28
36	Integrated Process Monitoring IPM, SINUMERIK 840D sl	BI.000225-EN-03

CS_IPMVR()	Read min./max. values from monitoring data.
CS_IPMMS()	Select monitoring method.
CS_ESCLAB()	Write alternative label.
CS_ESCON()	Activate alternative strategy.
CS_D()	Select cutting tip.
CS_IPMWL()	Write (read) min./max. values to (from) file.
CS_IPMTO()	Set spindle tool orientation.

CS_IPMON(...)

Explanation Enable tool monitoring

Syntax

CS_IPMON (STRING, VALUE)

Input/activation

STRING	=	Enable all monitoring methods together.
	"BREAK"	Enable break method.
	"OVERLOAD"	Enable overload method.
VALUE	1 or 2	Optional data for method group. If the parameter is omitted, all method groups are addressed.

Examples

CS_IPMON	Enable all monitoring methods in Method Group 1.
CS_IPMON()	Enable all monitoring methods in Method Group 1.
CS_IPMON("")	Enable all monitoring methods in Method Group 1.
CS_IPMON("BREAK")	Enable break method in Method Group 1.
CS_IPMON("OVERLOAD")	Enable overload method in Method Group 1.
CS_IPMON(,2)	Enable all methods in Method Group 2.
CS_IPMON("OVERLOAD",2)	Enable overload method in Method Group 2.

If the STRING is omitted: all monitoring methods are to be enabled

If the VALUE is omitted, all method groups are addressed.

CS_IPMOF(...)

Explanation

Enable tool monitoring

Syntax CS_IPMOF (STRING,VALUE)

2013-01-28	Operator Information
BI.000225-EN-03	Integrated Process Monitoring IPM, SINUMERIK 840D sl

Input/activation

STRING		Disable all monitoring methods together.
	"BREAK"	Disable break method.
	"OVERLOAD"	Disable overload method.
VALUE	1 or 2	Optional data for method group. If the parameter is omitted, all method groups are addressed.

Examples

CS_IPMOF	Disable all monitoring methods in Method Group 1.
CS_IPMOF()	Disable all monitoring methods in Method Group 1.
CS_IPMOF("")	Disable all monitoring methods in Method Group 1.
CS_IPMOF("BREAK")	Disable break method in Method Group 1.
CS_IPMOF("OVERLOAD")	Disable overload methods in Method Group 1.
CS_IPMOF(,2)	Disable all methods in Method Group 2.
CS_IPMOF("OVERLOAD",2)	Disable overload methods in Method Group 2.

If the STRING is omitted: all monitoring methods are to be disabled

If the VALUE is omitted, all method groups are addressed.

CS_IPMMW(...)

Parameters in general

Explanation

Set parameters for monitoring methods (current value).

Syntax

CS_IPMMW(STRING,VALUE1,VALUE2)

Input/activation

STRING	Parameter name as string variable (GUD name excluding IPM_METHOD) Example: "Upper limit" parameter setting.
VALUE1	Parameter value (REAL variable type)
VALUE2	Optional data for Method Group 2

HELLER

	STRING	VALUE1 VALUE2
	CS_IPMMW("STRATEGY_PAR1[2,2]",	5000,2)
	Parameter 1 Monitoring Monit	oring Method
	method 2 task 2	2 Group 2
	Parameters in detail, examples	
i	Changes to the following "STRATEGY_ effective immediately.	PARx[]" parameters are
Parameter 1	CS IPMMW("STRATEGY PAR1[2 2]" !	5000)
	Set parameter 1 of the monitoring proce	ess for method group 1.
	method 2, task 2 to a value of 5000.	
	Meaning of Parameter 1:	
	With "fixed limit" process:	Upper limit
	With "moving threshold" process:	Tolerance
		1
Parameter 2 CS_IPMMW("STRATEGY_PAR2[1.2]",777) Set parameter 2 of the monitoring process for method group method 1, task 2 to a value of 777.		7 77) ess for method group 1,
	Meaning of Parameter 2:	
	With "fixed limit" process:	Lower limit
	With "moving threshold" process:	Switching point
		- <i></i>
Parameter 3	CS_IPMMW("STRATEGY_PAR3[2.1]",7	(11)
	method 2 task 1 to a value of 711	ess for method group 1,
		,
	Meaning of Parameter 3:	
	With "fixed limit" process:	Average factor for sensor
	With "moving threshold" process:	Average factor for threshold
Parameter 4	CS_IPMMW("STRATEGY_PAR4[1.1]", Set parameter 4 of the monitoring proce method 1, task 1 to a value of 15.	I 5) ess for method group 1,
	Meaning of Parameter 4:	
	With "fixed limit" process:	Missing and/or blunt limit
	With "moving threshold" process:	Average factor for sensor
Parameter 1	CS_IPMMW("STRATEGY_PAR1[1.2]",9	995,2)

2013-01-28	Operator Information
BI.000225-EN-03	Integrated Process Monitoring IPM, SINUMERIK 840D sl

39

	Set parameter 1 of the monitoring process for method group 2, method 1, task 2 to a value of 995.
i	Changes to the other parameters only become effective when a new "CS_IPMMON" instruction is given.
i	This should however only be done in exceptional cases, since the significance of the strategy parameters could be changed as a result.
Event	CS_IPMMW("EVENT[1]",1) Set monitoring event for method group 1, method 1 to "break".
Target	CS_IPMMW("JOB_MASK[1]",1) Only 1 task is present in Methods Group 1, Method 1.
Connection	CS_IPMMW("JOB_CONNECT[1]",1) The tasks of Method Group 1, Method 1 are connected as "Or".
Alarm response	CS_IPMMW("ALARM_RESPONSE[2]",1) The response of method group 1, method 2 should cause an alarm to be displayed.
Sensor, sensor location	CS_IPMMW("SENSOR_ID[1.2]",257) The signal for the monitoring of Method Group 1, Method 1, Task 2 should be the setpoint torque value of the 1st machine axis.
Process	CS_IPMMW("STRATEGY[2.1]",1.2) The monitoring process of Method Group 2, Method 2, Task 1 should be "current value, fixed limit".
	Determine the basic mean value factor for the "current value, live threshold" process
current value, live thresh- old	With the "current value, moving threshold" process, certain tools or spindles encounter the problem of the basic signal being "noisy" or "unsteady".
Strategy parameter 4	 Another process "sliding average/moving threshold" solves this problem by pre-filtering the signal. The filtering operation is handled by another 4th parameter, which acts as a variable for noise suppression: Average factor for sensor (IPM window) Strategy parameter 4 (programming)

	Strategy par "CC_IPM_M	ameter 4 can be ETHOD_WR" an	used through the language command d can be changed "online".
Example	CC_IPM_ME	THOD_WR("ST ameter 4 of Meth	RATEGY_PAR4[1.1]",2) nod 1, Task 1 is set to 2.
Basic mean factor	Recommendation: The signal to be processed is monitored initially with the "sliding average, fixed limit" process and steadied with the aid of the average factor for "threshold". The determined average factor for "sensor" is then used as the average factor for "threshold" (basic average factor) with the "current value, moving threshold" process.		
CS_IPMMR()			
Explanation	Read param	eters for monitor	ing methods (current value).
Syntax	CS_IPMMR (RET_VALUE,STRING,VALUE)		
Input/activation	RET_VALUE	Return value of curr	ent value (REAL variable type)
	STRING	Parameter name as Example: "EVENT"	string (GUD name excluding IPM_METHOD). for monitoring event.
	VALUE	Optional data for Me	ethod Group 2.
Example	 CS_IPMMR(R0"STRATEGY_PAR2[1.2]") Read out Parameter 2 of the monitoring process for Method Group 1, Method 1, Task 2 in the RO variable. CS_IPMMR(R1"STRATEGY_PAR2[2.1]",2) Read out Parameter 2 of the monitoring process for Method Group 2, Method 2, Task 1 into the R1 variable. 		
CS_IPMCO()			
Explanation	Execute IPM	l command	
Syntax	CS_IPMCO (STRING, VALUE1, VALUE2)		
Input/activation	String		Value rance
	"CLEARTOWVA	L"	Delete all min/max values. VALUE1: No meaning VALUE2: Definition method group 2
	"CLEARTOWVA	L_BREAK "	Delete min./max. values of break monitoring. VALUE1: No meaning VALUE2: Definition method group 2

1.2 Integrated Process Monitoring IPM (option)

String	Value range
"CLEARTOWVAL_OVERLOAD"	Delete min./max. values of overload monitoring. VALUE1: No meaning VALUE2: Definition method group 2
"NEXT_NOT_EXECUTABLE"	Set next block to "not executable". Instruction required if halting at end of block is not possible. The CC command is not effective until the next executable block. VALUE1, VALUE2: No meaning
"NEXT_EXECUTABLE"	Set next block to "executable". The CC instruction is effective immediately. VALUE1, VALUE2: No meaning
"CLEARALARM_BREAK"	Reset all "break" alarms. VALUE1, VALUE2: No meaning
"CLEARALARM_OVERLOAD"	Reset all "overload" alarms. VALUE1, VALUE2: No meaning
"CLEARALARM"	Reset all alarms. VALUE1, VALUE2: No meaning
"LOWLIMIT_DELAYTIME"	Activate once only cutting monitoring. VALUE1: Time in seconds. VALUE2: No meaning.
"LOWLIMIT_DELAYTIME_REPEA T"	Activate repeatable cutting monitoring. VALUE1: Time in seconds. VALUE2: No meaning.
"LOWLIMIT_DELAYDIST"	Delete all min/max values. VALUE1: No meaning VALUE2: Definition method group 2
"LOWLIMIT_DELAYDIST_REPEA T"	Activate repeatable cutting monitoring. VALUE1: Path distance in mm. VALUE2: No meaning
"ALARM_OFF"	Suppress alarm output. VALUE1, VALUE2: No meaning
"ALARM_ON"	Enable alarm output. VALUE1, VALUE2: No meaning
"SIGNAL_FACTOR"	Signals of an axis (x=131) to be evaluated using a factor. VALUE1: Evaluation factor. VALUE2: No meaning.
"RESET_METHODGROUPS"	Set methods of all method groups as ineffective. VALUE1: No meaning. VALUE2: No meaning.
"CONFIGURE_METHODGROUPS"	Execute complete configuration of all methods/~- groups. VALUE1: No meaning. VALUE2: No meaning.
"CHECK_WEAR"	"Blunt" monitoring: With overload methods combined with strategy parameter 4 (not with "moving threshold" process). The programmed parameter 4 is compared with the current block average. Blunt alarm generated if the block average is greater than parameter 4. VALUE1: No meaning. VALUE2: No meaning.

42	Integrated Process Monitoring IPM, SINUMERIK 840D sl	BI.000225-EN-03
	Operator Information	2013-01-28

String	Value range
"CHECK_MISSING"	"Missing" monitoring: With break methods combined with strategy parameter 4 (not with "moving threshold" process). The programmed parameter 4 is compared with the current block average. Missing alarm generated if the block average is smaller than parameter 4. VALUE1: No meaning. VALUE2: No meaning.
"CHECK_WEAR_AND_MISSING"	"Blunt" and "missing" check simultaneously. VALUE1: No meaning. VALUE2: No meaning.
"CLEAR_BLOCK_AVERAGEVAL"	Reset current block average for all monitoring tasks. VALUE1: No meaning. VALUE2: No meaning.
"UPPER_OVERRIDE_CHECK"	Disable blunt check when the upper override value is exceeded. Example: With VALUE1 = 110 and an override value of 115, for example, the alarm generation for blunt is prevented. Appropriate value range: 100 200. VALUE2: No meaning.
" "LOWER_OVERRIDE_CHECK "	Disable cutting and missing check when the lower override value is not reached. Example: For VALUE1 = 70, alarm generation for cutting and missing check is inhinged at an override value from 60, for example. Appropriate value range: 0 100. VALUE2: No meaning.
"SET_EVENT_STATE"	Enables the ON/OFF statuses of individual or all events to be controlled. (from IPM1.1/13). The cc_ipm_value_rd("EVENT_STATE") command is useful in this respect. For example, if you want to temporarily disable monitoring during a measuring cycle, this the original status can be restored using this command. The value to be written is bit-coded: Bit 0 = log.1: all monitoring runs are active (remaining bits are then irrelevant). Bit 1 = log 1: break monitoring is active, Bit 2 = log 1: overload monitoring is active
"FEEDRATE_AVERAGE_FACTOR"	Enables input signal for the "controlled override" method to be pre-filtered. (from IPM1.2/9). This value defaults to 10 (after NC reset). VALUE2: No meaning.
"FEEDRATE_AIR_CUT_LIMIT"	Sets limit for air cutting detection with "controlled override" method (from IPM1.2/9). If the input signal falls below this limit, the path override is set to the value defined by the "FEEDRATE_AIR_CUT_FEED_FACTOR" parameter. This value defaults to 0 (after NC reset), i.e. air cutting detection is disabled. VALUE2: No meaning.
"FEEDRATE_AIR_CUT_FEED_FA CTOR"	Sets value for path override during air cutting detection if "controlled override" method is selected (from IPM1.2/9). If the input signal falls below the "FEEDRATE_AIR_CUT_LIMIT" value, the path override is permanently set to the value defined by the "FEEDRATE_AIR_CUT_FEED_FACTOR" parameter. This value defaults to 0 (after NC reset), i.e. air cutting detection is disabled. VALUE2: No meaning.

String	Value range
"FEEDRATE_GAIN"	Sets the P-component of the (PI) controller if the "controlled override" method is selected. (from IPM1.2/9). If the value is 0, which is also the default (after NC reset), this is a pure I-controller with integration time "FEEDRATE_TIME". This (default) value has been optimised and should not be changed. VALUE2: No meaning.
"FEEDRATE_TIME"	Sets the I-component of the (I or PI) controller if the "controlled override" method is selected. (from IPM1.2/9). Following initialisation (after NC-reset), an I-controller with time constant 4s is active. If a PI controller is used, the P-component should be adjusted using "FEEDRATE_GAIN". This value (default) has been optimised and should not be changed. VALUE2: No meaning.
"FEEDRATE_UP_FACTOR"	This (default) value has been optimised and should not be changed. VALUE2: No meaning.
"FEEDRATE_DOWN_FACTOR"	This (default) value has been optimised and should not be changed. VALUE2: No meaning.
VALUE1	Parameter value (REAL variable type) is only relevant at "LOWLIMIT", "SIGNAL_FACTOR", "OVERRIDE_CHECK", "SET_EVENT_STATE" and "FEEDRATE" Irrelevant
WERT2 (1bzw.2)	Optional data for method group. Relevant only for "CLEARTOWVALUE" and "SET_EVENT_STATE". If the parameter is omitted, all method groups are addressed.

CS_IPMCO("CLEARTOWVAL", ,2) Delete all tow indicator values from the monitoring data of method group 2.

CS_IPMCO("LOWLIMIT_DELAYDIST", 10)

Activate cutting check after a path distance of 10 mm.

CS_IPMCO("CHECK_WEAR_AND_MISSING") Trigger "blunt" and "missing" check.

Cutting monitoring

General

Examples

The cutting check (from IPM V1. 1/5) enables a lower limit of a break method to be monitored. This ensures a missing or broken tool is detected

Syntax CS_IPMCO("LOWLIMIT_DELAYTIME",x)

CS_IPMCO("LOWLIMIT_DELAYDIST",y)

	 x = time value in seconds Y = distance in mm After x seconds or y mm path distance (TCP = tool centre point), the current or determined value is checked against the lower limit respectively. If this value is below the limit, an alarm is triggered. and the lower limit is then no longer checked.
Syntax	CS_IPMCO("LOWLIMIT_DELAYTIME_REPEAT",x)
	CS_IPMCO("LOWLIMIT_DELAYDIST_REPEAT",y)
	 x = time value in seconds y = distance in mm After x seconds or y mm path distance, the current and/or or averaged value is checked against the lower limit. If this value is below the limit, an alarm is triggered. The same process is then repeated, if the current or averaged value falls below the lower limit.
Notes	The cutting check functions only with "break" methods. When a G0 block is reached, the counted path distance is reset. The measurement of x and/or y only begins again during the next feed block. TCP means "Tool centre point". When programming a distance in mm, please note that activation of a tool radius offset (e.g. G41) relates to the path of the tool centre point and not to the path on the contour. From IPM V1.1/7: Cycle CS_IPMCO("CHECK_LOWER_OVERRIDE",x) can be used to prevent a cutting alarm being triggered if a feed override x is not reached.
	Blunt and missing monitoring
General	Blunt and missing monitoring (from IPM V1. 1/7) enables a "surface evaluation" to be effected using a machining section to be defined.
Syntax	CS_IPMCO("CHECK_WEAR")
	CS_IPMCO("CHECK_MISSING")
	CS_IPMCO("CHECK_WEAR_AND_MISSING")
General	At precisely this point in time, all tasks defined by the "averaged value, fixed limit and blunt/missing limit" process are compared with a value present in strategy parameter 4 (or alternatively in the Method Editor in the "missing or blunt limit" parameter) and the current block value.

For fracture methods, the "missing" alarm is triggered if: current block average value < strategy parameter 4. For overload methods, the "blunt" alarm is triggered if: current block average value > strategy parameter 4. The block average can be read or deleted at any time. The block average is created for all processes (including "current value, moving threshold"). With moving threshold, strategy parameter 4 is reserved to create the block average and therefore unavailable for missing/blunt monitoring. The following language commands are available to read/delete the block average: CS_IPMVR(R0,"BLOCK_AVERAGEVAL[1.2]",1) Meaning: The block average value for method group 1, method 1, task 2 is read into the calculation parameter r0. CS_IPMCO("CLEAR_BLOCK_AVERAGEVAL") Meaning: All block average values for all tasks are deleted. The block average is then recreated. From IPM V1.1/7: CS_IPMCO("CHECK_LOWER_OVERRIDE",x) A missing alarm can be prevented from being triggered if a feed override x is not reached CS_IPMCO("CHECK_UPPER_OVERRIDE",x) a blunt alarm can be prevented from being triggered if a feed override x is exceeded. With blunt and missing monitoring, the task links are not considered (behaviour as with an 'OR' link). The check (CS IPMCO) can also be performed whilst rapid traverse G0 is active.

CS_IPMVR(...)

Explanation

Read IPM values.

Syntax

Input/activation

RET_VALUE	Return value of current value (REAL variable type)
STRING	The following values to be read as STRING: "UPPER_TOWVAL": read upper tow value "LOWER_TOWVAL": read lower tow value - "BLOCK_AVERAGEVAL": read block average "EVENT_STATE": read event state "DEBUGVAL": read debug value (for service only).
VALUE	Optional data for method group. Irrelevant for "DEBUGVAL". If the parameter is omitted, method group 1 is addressed.

Example

46

CS_IPMVR(R0,"UPPER_TOWVAL[1.2]")

CS_IPMVR (RET_VALUE, STRING, VALUE)

Save upper tow value for Method Group1, Method 1, Task 2 to the R0 variable

CS_IPMVR(R1,"UPPER_TOWVAL[1.2]",2)

Save tow value for Method Group2, Method 1, Task 2 to the R1 variable

CS_IPMVR(R2,"BLOCK_AVERAGE[2.1]",2)

Save block average for Method Group2, Method 1, Task 2 to the R2 variable

CS_IPMVR(R3,"EVENT_STATE",1)

Store event states of method group 1 (from IPM1.1/13) in Variable R3. Reads the ON/OFF statuses of certain or all events. The CS_IPMCO("SET_EVENT_STATE"..) command is useful in this respect.

For example, if you want to temporarily disable monitoring during a measuring cycle, the previous status can be restored using this command.

The read result is bit-coded:

Bit 0 = log.1:	all monitoring operations are active (The remaining bits are then irrelevant)
Bit 1 = log 1:	Break monitoring is active
Bit 2 = log 1:	Overload monitoring is active

CS_IPMVR(R4,"DEBUGVAL[1]")

Read debug value 1. Store result in variable R4. This function is intended for diagnostic purposes.

CS_IPMMS(...)

Explanation

Method selection.

This cycle is not usually required, since it is automatically selected along with a tool change or cutting tip change (CS_D). Theoretically, however, it is possible to access alternative methods (which have to be loaded) at any time.

Syntax

CS_IPMMS (VALUE1, VALUE2, VALUE3, STRING)

Input/activation

VALUE1	Method key of Method No. 1.
VALUE2	Method key of Method No. 2.
VALUE3	Optional data for method group. If the parameter is omitted, all method groups are addressed.
STRING	Optional data of a tool identifier (for alarm messages).

Example	CS_IPMMS(1) As Method 1, the method is activated in Method Group 1 (default) using method key 1.			
	CS_IPMMS(3,4,2) The method with methods key 3 is activated as method 1 and the method with methods key 4 in method group 2 is activated as method 2.			
	CS_IPMMS(,6,1) As Method 2, the method is activated in Method Group 1 using method key 6.			
CS_D()				
Explanation	Select cutting tip with using additional method selection. The cycle must be used, since the standard tip selection (e.g. D2 and/or D=2) does not automatically activate the method allocated to the cutting tips.			
Syntax	CS_D (VAL	UE)		
Input/activation	VALUE	Number of cutting tip (integer).		
Example	CS_D(3) Select cuttir	ng tip no. 3 (corresponds to D3 and/or D=3).		
CS_IPMWL()				
Explanation	Write/read a	and/or learning/monitor tow values to a file.		
Syntax	CS_IPMWL (STRING1,STRING2,STRING3)			
Input/activation	STRING1	Possible modes for which the cycle is to be activated: - "LEARNING" - "MONITORING" - "LOGFILE" - "COMMAND"		

STRING2	With STRING1="LEARNING", "MONITORING", the current mode is possible ("LEARNING", "MONITORING"). For STRING1="LOGFILE": Name of logfile (optional) ¹ For STRING1="COMMAND": command type possible. - "CLEARLOGFILES": clear all log files. - "START_LEARNING_MONITORING": start learning/monitoring. - "ALL_ON": switch-on all logs - "ALL_OFF": switch-off all logs - "LOWERTOW_ON": lower tow value on - "LOWERTOW_OFF": lower tow value on - "UPPERTOW_OFF": upper tow value on - "UPPERTOW_OFF": Upper tow value from - "BLOCKAVERAGE_OFF": block average on (from IPM V1.1/7). - "BLOCKAVERAGE_OFF": Block average value off. - "TEXTFORMAT_ON": Text format on. - "TEXTFORMAT_OFF": Text format off (Excel table) ² . - "HEADERLOGFILELINE_OFF": hide header line "HEADERLOGFILELINE_OFF": hide header line. - "LASTLOGFILELINE_OFF": hide last line. - "LASTLOGFILELINE_OFF": set monitoring counter (with cross-access).
STRING3	For STRING1="LOGFILE": text that can appear as the header (optional). For STRING1="LEARNING","MONITORING": name of learn file (optional). For STRING1="COMMAND" and STRING2=" SETMONITORINGCOUNTER", located here is the "counter value" for cross-entry into the program as a string, e.g. "3" for the 3rd phase or tool.

If the file is full, it is deleted and re-written.
 One line, data separated by commas

```
Programming example

DEF STRING[20] LV_ACTMODE="MONITORING".

;Default setting for reporting.

CS_IPMWL("COMMAND","ALL_ON")

;delete logfiles.

CS_IPMWL("COMMAND","CLEARLOGFILES")

;start from learning/monitoring.

CS_IPMWL("COMMAND","START_LEARNING_MONITORING")

CS_TOOL("1")

;the learned limits are read only in "MONITORING" mode.

CS_IPMWL("Monitoring", LV_ACTMODE)

;The machining program for tool T1 is located here.

;the current upper limits are written only in "LEARNING" mode.

CS_IPMWL("LEARNING", LV_ACTMODE)

;Store current tow indicator values in the log file.
```

CS_IPMWL("LOGFILE", , "Programmstart:"<<\$A_Hour<<":"<< \$A_MINUTE<<":<<\$A_SECOND)</pre> CS_TOOL("2") ;the learned upper limits are read only in "MONITORING" mode. CS_IPMWL("MONITORING", LV_ACTMODE) ;The machining program for tool T2 is located here. ;the current upper limits are written only in "LEARNING" mode. CS_IPMWL("LEARNING", LV_ACTMODE) ;Store current tow indicator values in the log file. CS_IPMWL("LOGFILE") In the above example, the upper limits of the monitoring methods can be "learned"=="LEARNING" and "monitored"=="MONITORING". The "LEARNING" mode can be activated by initialising the variable LV_ACTMODE="LEARNING" before the program is started. After a learning run, monitoring can take place by writing to the variable LV_ACTMODE="MONITORING". The leaned values stored during the learning operation are saved to a file in the current directory (e.g. workpiece directory) (default: IPMLEARN_CHANx.MPF). With overload methods, the limits are set to 120% of the learned peak values and with break methods to 150% of the learned peak values. The cycle also enables a log file to be generated. At arbitrary places in the machining program, the lower and upper limits and the block average can be logged in the log files (default: IPMLOG_CHANx_y.MPF), which are also stored in the current directory, at any point in the machining program. Comment: x=channel number, y=file number. CS_IPMTO(...) Explanation Set spindle tool orientation. This tool orientation remains valid until the next cutting tip and/or tool change. The orientation vector can be any length. The vector (0,0,0)deletes the predefined orientation again. Syntax CS_IPMTO (VALUE1, VALUE2, VALUE3) Input/activation VALUE1 Geoaxis 1 and/or X-component of the spindle vector. VALUE2 Geoaxis 2 and/or Y-component of the spindle vector. VALUE2 Geoaxis 3 and/or Z-component of the spindle vector. CS_IPMTO(0,TAN(30),1) Example

Operator Information	2013-01-28
Integrated Process Monitoring IPM, SINUMERIK 840D sl	BI.000225-EN-03

Tool that points 30 degrees upwards relative to the horizontal.

CS_IPMTO(1,0,0) Tool that points towards the X-axis (e.g. angular head).

CS_IPMTO(0,0,0)

Delete tool orientation.

1.2.6.2 Controlling monitoring via synchronous actions

\$AC_MARKER	\$AC_MARKER[8] is available for synchronous actions. This is bitcoded. The individual bits mean the following:				
	Bit 0=1 Routed deactivation of all monitoring events (break, overload).				
	Bit 1=1 Routed deactivation of the break event.				
	Bit 2=1 Routed deactivation of overload monitoring.				
Example	N10 C0 CE2 C40				
	NIU GU G55 G40				
	N20 X0				
	N30 \$AC_MARKER[8]=1; Deactivate all events				
	N40 G1 F5000				
	N50 when \$AA_IM[MA_X]>=100 DO \$AC_MARKER[8]=0				
	N60 when \$AA_IM[MA_X]>=200 DO \$AC_MARKER[8]=1				
	N70 X30				
	In the NC block N70, monitoring is enabled for as long as the X-axis (corresponds to machine axis MA_X) is located between positions 100 and 200.				

1.2.6.3 Alternative Strategy (option)

General	
System cycles	The NC programmer has the option of switching to alternative program in his NC program such an event occur (IPM, BTD and/or BBK or EWS). User-friendly and understandable system cycles are available for this purpose.
Programming rules	Certain programming rules must be observed:

2013-01-28	Operator Information
BI.000225-EN-03	Integrated Process Monitoring IPM, SINUMERIK 840D sl

- The alternative strategy can only be programmed at the 1st programming level.

- The first executable lines in the program must be the cycle call up CS_ESCON(bit bar). The bit bar can be used to select the faults that will trigger the alternative strategy. Bit1 -> Integrated Process Monitoring IPM.
- The alternative destination to be reached in the event of a fault must be programmed by the NC programmer in the program sequence using CS_ESCLAB("Label").
- The "Label" alternative destination must be programmed at the 1st programming level.
- Integrated Process Monitoring is enabled via CS_IPMON("Mode"). The monitoring type is selected through mode. (only with IPM).
- Integrated Process Monitoring is disabled through CS_IPMOF("Mode") in line with the mode. (only with IPM).
- Alternative strategy is automatically deselected at the end of the program.

System cycles

CS_ESCON(...)

Explanation	System cycle "CS_ESCON" is used to anchor the alternative strategy in the NC program. The system cycle must always be at the start of the program. The alternative strategy is disabled at the end of the program.					
Syntax	CS_ESCON (BIT BAR)					
Input/activation	BIT 0:	1	No usabl	No usable tool activated.		
	BIT 1:	1	Integrate	d Proces	s Mor	itoring IPM activated. (Break method)
	BIT 2:	1	Tool brea	ak monito	oring a	ctivated
Example	BIT BAR		1 BIT 2	0 Bit 1	0 Bit 0	= 4
	CS_ESCO	N(4)				Activate tool break monitoring
	CS_ESCON(`B100`)					Activate tool break monitoring
	CS_ESCO	N(`B10	`)			Activate IPM (break method)
	~~ ~~	01.45	()			
	CS_ES	CLAB	()			

Explanation	The "CS_ESCLAB" is used to declare the alternative destination (label) to which the program should skip should a monitoring event occur. The alternative target must be positioned before each program section. If no "IPM" option is installed, a main run stop is required to describe the label. Otherwise, the label is written through a NCK-OEM function at the main run time point. This is realised in the system cycle, so that the programmer can always call up the same cycle, irrespective of the IPM option.			
Syntax	CS_ESCON ("P.	ARAM")		
Input/activation	PARAM	String variable.		
	CS_ESCEV()			
Explanation	You do not have to program the "CS_ESCEV" system cycle. The cycle is automatically selected in the event of a fault. This triggers the following actions:			
	 A M64 is output, in order to set the tool to the "reject" status (NOK). 			
	 The cycle is used as a branch address distributor for alternative labels when the main program is restarted after a fault. 			

1.2.6.4 Programming example

%_N_AWS_TEST1_MPF				
;\$PATH	=/_N_WKS_DIR/_N_NCTEST_WPD			
N10	CS_ESCON(2)	Activate Bit 1 tool monitoring.		
N20	CS_ESCLAB("AUSW");	Alternative program from label AUSW.		
N30	CS_IPMON("ALL");	Enable break and overload		
N40	CS_TOOL("TOOL_7",1);	Tool is replaced and IPM monitoring data activated.		
N50	S1000 M3 G1 F1000 X0 X100	Machining is started.		
		Monitoring event occurs!!! The program skips to the AUSW label through the alternative strategy.		
N70	GOTO END	Normal program end if no monitoring event occurs.		
N80	AUSW:			

HELLER

N10	CS_ESCON	
N90	MSG ("Program skips to alternative label")	Programmer can intervene at this point.
N130	END:	
N140		
N150	MSG ("Program end")	
N160	M30	

1.2.6.5 Generating a log file

Scenario	Information for generating a log file in the alternative strategy. Under certain circumstances it may be advisable should a monitoring even occur (e.g. tool break) to document which tools fail during a shift. For this purpose, a report can be produced using the "WRITE" instruction under the alternative label in the part program. More detailed information on file handling (WRITE, DELETE, etc.) can be found in the Siemens Programming Instructions for "Work Preparation".
Example	DEF INT EC
	DEF STRING[100] MTEXT
	if((\$P_Search<>1)AND(\$P_TOOLNO>0))
	MTEXT=" IPM BREAK MESSAGE, tool name: "
	<<\$TC_TP2[\$P_TOOLNO]<<" Duplo no.: "
	<<\$TC_TP2[\$P_TOOLNO]<<" Cutting edge: "<<\$P_TOOL
	WRITE (_EC,
	"LOGBOOK", \$A_HOUR<<":"<<\$A_MINUTE<< ":"<<\$A_SECOND< <mtext)< td=""></mtext)<>
	if(_EC==10)
	MSG("Logbook is full, deleted at NC Start!")
	mO
	DELETE (_EC,"LOG BOOK")
	endif
	<pre>endif ; if \$P_SEARCH<>1</pre>
	m30

1.2.6.6 Control override (from IPM1.2/9)

General	The special feature of control override is its ability to modify feedrate to the actual cutting conditions in realtime. If air cutting is detected, feedrate can in addition be multiplied by a fixed (can be revised through NC language command) factor. After an NC reset, this factor defaults to 150 (%). This control feature enables optimal tool utilisation and prevents overload. As a result, production output can usually be increased.				
Programming	In the IPM monitoring method: Select "Control OVERRIDE without alarm" or "Control OVERRIDE with alarm" methods. Three configuration parameters for the control algorithm: - "upper override limit" (strategy parameter 1) - "lower override limit" (strategy parameter 2)				
	 "Setpoint value and/or reference(output) to be controlled to (strategy parameter 3) These parameters can be modified at any time via the NC language command "CS_IPMMW("STRATEGY_PAR)". The "control override" method may occur in only one monitoring task. Otherwise, the one with the highest method group, method or task wins. 				
	Further parameters can be modified if required through language commands:				
	 Setpoint value (usually spindle rating) for air cutting detection: Programming: CS_IPMCO("FEEDRATE_AIR_CUT_LIMIT",x) Initialisation after NC reset: x=0 (deactivated) Override factor for air cutting detection: Programming: CS_IDMCO("FEEDRATE_AIR_CUT_EEED_EACTOR", x) Initialised 				
	after NC reset: x=150 (With default from MD N12030 \$MN_OVR_FACTOR_FEEDRATE[30] = 1.2 is max. 126% possible)				
	The values of the parameters below are optimised and should not be changed:				
	 Time constants (Ti for I-controller and Tn for PI controller): Programming: CS_IPMCO("FEEDRATE_TIME",x) Initialisation after NC reset: x=4s 				

	 Mean factor for the input signal: Programming: CS_IPMCO("FEEDRATE_AVERAGE_FACTOR",x) Initialisation after NC reset: x=10 P-component (reinforcement for Pl controller): Programming: CS_IPMCO("FEEDRATE_GAIN",x) Initialisation after NC reset: x=0 (deactivated = I controller is thus active) 		
Drain	The controller receives the actual value minus setpoint value differential (usually actual output minus reference output) as an inpu variable. The variable is the override, which can only be influenced if the following preconditions are satisfied:		
	- "Control override" method selected		
	- Method active		
	- G0 not selected		
	- Override setting on machine control panel = 100%.		
	The output is controlled within the permissible limits (lo override limits). This is usually handled by an I contro lower override limit is reached, an alarm is generated "Control OVERRIDE with alarm" option has been sel	ower and upper oller. When the d provided the ected.	
i	Note: If you want the override to exceed a value of 126%, t datum N12030 \$MN_OVR_FACTOR_FEEDRATE[30 set. This is the maximum value. And allows a maxim the programmed feed to be achieved.	the machine)]=2 must be um of 210% of	
Example	An example of an override control with air cutting det provided below. In this example, a workpiece is macl surface milling tool (oblique cut over three grooves). The following parameters have been configured:	ection is hined with a	
	- upper override limit:	130 %	
	- lower override limit:	50 %	
	- Setpoint value (spindle rating):	1.5 KW	
	- Air cutting detection with:	0.7 KW	
	- Override factor for air cutting detection:	15 %	
Graphic illustration	Standard for scaling:		

The diagram shows that after target milling the second and third groove, the override is rolled back prevent the spindle rating exceeding 1.5 kW and keep it at no more than this permissible rating. Furthermore, if the air cutting detection limit is exceeded, the override is raised to 130% (top override limit) in order to optimise tool utilisation.

When the milling cutter is cutting air, the override is raised to 150% to minimise non-cutting time.

1.2.6.7 Alarm signals

75120 "Channel %1 IPM interpreter configuration alarm error no.: %2

Error number:

1: "CC_IPM_CONFIG_ERROR_MEM"

The IMP compiler cycle has insufficient memory. Remedy: Increase MD62803, possibly also MD28105 (Cond.: MD62803<=MD28105)

2: "CC_IPM_CONFIG_ERROR_MD"

The IPM compiler cycle has problems creating machine data.

Under normal circumstances this should never occur on the machine.

3:

"CC_IPM_CONFIG_ERROR_CC_BLOCK_ELEMENTS_USER_M EM"

The memory for the block element is too low. Remedy: Increase MD28090 and/or 28100.

4:

"CC_IPM_CONFIG_ERROR_IPO_SYSCLOCK_TIME_RATIO"

The IPO servo cycle ratio may not exceed 3. Remedy: MD10070 must be either 1, 2 or 3.

5: "CC_IPM_CONFIG_ERROR_MM_NUM_CC_MON_PARAM"

Parameters \$TC_MOPC1 and \$TC_MOPC2 are not present. Remedy: MD18099 \$MN_MM_NUM_CC_MON_PARAM>=2 MD18080 \$MN_MM_TOOL_MANAGEMENT_MASK set Bits 0 and 2.

6: "CC_IPM_CONFIG_ERROR_MM_NUM_CC_TDA_PARAM"

Parameters \$TC_DPC9 and \$TC_DPC10 are not present. Remedy: MD18094 \$MN_MM_NUM_CC_TDA_PARAM>=10 MD18080 \$MN_MM_TOOL_MANAGEMENT_MASK set Bit 2.

7: "CC_IPM_CONFIG_ERROR_NCK_RESET_REQUIRED"

Another NCK reset is required. Remedy: Press NCK reset through commissioning main menu, reset keys function on the NCU or switch machine off/on.

75121 "Channel %1 block %2 IPM Interpreter programming error no.: %3

Error number:

1: "CC_IPM_ERROR"

This is a general error which should actually never occur.

2: "CC_IPM_ERROR_PARA_STRING_NOT_FOUND"

The transfer parameter specified in the instruction is not present. Remedy: Check spelling and/or syntax.

3: "CC_IPM_ERROR_PARA_STRING_NOT_ALLOWED"

The transfer parameter specified in the instruction is not permitted in this context.

Remedy: Check spelling and/or syntax.

4: "CC_IPM_ERROR_PARA_METHOD_NR"

The specified method number lies outside of the valid value range. Values 1 and 2 are currently allowed. Remedy: enter value method number.

5: "CC_IPM_ERROR_PARA_TASK_NR"

The specified task number lies outside of the valid value range. Values 1 and 2 are currently allowed. Remedy: Enter valid task number

6: "CC_IPM_ERROR_READ_FIRST_STACK_ARGUMENT"

Error occurs when the first transfer parameter is being read. This is a general error which should actually never occur.

7: "CC_IPM_ERROR_READ_SECOND_STACK_ARGUMENT"

Error occurs when the second transfer parameter is being read. This is a general error which should actually never occur.

8: "CC_IPM_ERROR_REA_BLOCKELEMENT_FAILED"

Error on reading block element. This is a general error which should actually never occur.

9: "CC_IPM_ERROR_CC_BLOCK_USER_MEM"

The memory for the block element is too low. Remedy: Increase MD28090 and/or 28100.

10: "CC_IPM_ERROR_CC_PUSH_RETURNVALUE"

Error as a value is being returned to the CC function. This is a general error which should actually never occur.

11: "CC_IPM_ERROR_GUD_METHODS_NOT_FOUND"

The methods data of the tool cannot be found in the SGUDs. Remedy: Correct method reference or execute management comparison of tool data.

12: "CC_IPM_ERROR_EVENT_NOT_ALLOWED"

The projected monitoring event is not possible. This is a general error which should actually never occur.

13: "CC_IPM_ERROR_JOB_MASK_NOT_ALLOWED"

The selected monitoring tasks are not present. This is a general error which should actually never occur.

14: "CC_IPM_ERROR_JOB_CONNECT NOT_ALLOWED"

The specified connection is not possible. This is a general error which should actually never occur.

15: "CC_IPM_ERROR_ALARM_RESPONSE_NOT_ALLOWED"

The specified alarm response is not possible. This is a general error which should actually never occur.

16: "CC_IPM_ERROR_STRATEGY_NOT_ALLOWED"

The specified monitoring strategy is not possible. This is a general error which should actually never occur.

17: "CC_IPM_ERROR_GUD_READ_BINDING"

The GUDs cannot be read.

This is a general error which should actually never occur.

18:

"CC_IPM_ERROR_GUD_METHOD_SYMBOL_NOT_FOUND"

The GUDS to be read are not present. This is a general error which should actually never occur.

19: "CC_IPM_ERROR_READ_THIRD_STACK_ARGUMENT"

Error occurs when the third transfer parameter is being read. This is a general error which should actually never occur.

20: "CC_IPM_ERROR_METHOD_GROUP_NOT_ALLOWED"

The specified method group is not present or not configured. Remedy: Correct NC program or increase MD6284.

21: "CC_IPM_ERROR_SENSOR_ID_TYPE_NOT_ALLOWED"

The specified sensor ID (sensor type) is not possible. This is a general error which should actually never occur.

22: "CC_IPM_ERROR_READ_FOURTH_STACK_ARGUMENT"

Error occurs when the fourth transfer parameter is being read. This is a general error which should actually never occur.

23:

"CC_IPM_ERROR_SENSOR_ID_MACH_AX_INDEX_NOT_ALL OWED"

The specified sensor ID (sensor location) is not possible. This is a general error which should actually never occur.

24: "CC_IPM_ERROR_SENSOR_ID_CHAN_AX_NOT_ALLOWED"

The specified sensor ID (sensor location) is not possible. This is a general error which should actually never occur.

25:

"CC_IPM_ERROR_SENSOR_ID_CHAN_AX_INDEX_FROM_AX TAB_NOT_ALLOWED"

The specified sensor ID (sensor location) is not possible. This is a general error which should actually never occur.

26: "CC_IPM_ERROR_SENSOR_ID_GEO_CHAN_AX_NOT_ALLOW ED"

The specified sensor ID (sensor location) is not possible. This is a general error which should actually never occur.

27:

"CC_IPM_ERROR_SENSOR_ID_GEO_AX_INDEX_FRROM_AX TAB_NOT_ALLOWED"

The specified sensor ID (sensor location) is not possible. This is a general error which should actually never occur.

	Operator Information	2013-01-28
62	Integrated Process Monitoring IPM, SINUMERIK 840D sl	BI.000225-EN-03

75122 "Channel %1 IPM fracture alarm, method no.: %2, method ID: %3%4

75126 "Channel %1 IPM fracture alarm (cut), method no.: %2, method ID: %3%4

75128 "Channel %1 IPM fracture alarm (missing), method no.: %2, method ID: %3%4

Method no.: %2	 If the method was input via the control panel (MMC), the value 1 appears in method group 1 with an overload alarm. If the event was defined through the programming instruction, method 1 of method group 1 should be set to the "break" monitoring event. Program example: CS_IPMMW ("EVENT[1]",1,1) 		
	 If the event was defined through the NC programming instruction, method 2 of method group 1 has been set to the "break" monitoring event. Program example: CS_IPMMW ("EVENT[2]",1,1) 		
	3. If the method was input via the control panel (MMC), the value 2 appears in method group 3 with an overload alarm. If the event was defined through the programming instruction, method 2 of method group 2 should be set to the "break" monitoring event. Program example: CS_IPMMW ("EVENT[1]",1,2)		
	 If the event was defined through the NC programming instruction, method 2 of method group 2 has been set to the "break" monitoring event. Program example: CS_IPMMW ("EVENT[2]",1,2) 		
Methods ID: %3	This is where the method ID is specified, which is automatically assigned during generation of a monitoring method. This is used to identify the method. If the value "0" is specified, the method can no longer be identified, since it has been changed by the NC language instruction. It no longer corresponds to the method in the database (MMC).		
%4	If software status >= V1.1/5 is used, an additional string that is transferred on method selection (usually cutting tip or tool change) will be output. Usually, the tool identifier, the Duplo number and the active cutting tip number are displayed. This identifies the tool that has triggered the alarm.		

75123 "Channel %1 IPM overload alarm, method no.: %2, method ID: %3%4

75127 "Channel %1 IPM overload alarm (blunt), method no.: %2, method ID: %3%4

Method no.: %2	 If the event was defined through the NC programming instruction, method 1 of method group 1 has been set to the "overload" monitoring event. Program example: CS_IPMMW ("EVENT[1]", 2, 1) 	
	 If the method was input via the MMC interface, the value 2 always appears with an overload alarm. If the event was defined through the NC programming instruction, method 2 of method group 1 has been set to the "overload" monitoring event. Program example: CS_IPMMW ("EVENT[2]", 2, 1) 	
	 If the event was defined through the NC programming instruction, method 1 of method group 2 has been set to the "overload" monitoring event. Program example: CS_IPMMW ("EVENT[1]",2,2) 	
	4. If the method was input via the MMC interface, the value 4 always appears with an overload alarm. If the event was defined through the NC programming instruction, method 2 of method group 2 has been set to the "overload" monitoring event. Program example: CS_IPMMW ("EVENT[2]", 2, 2)	
Methods ID: %3	This is where the method ID is specified, which is automatically assigned during generation of a monitoring method. This is used to identify the method. If the value "0" is specified, the method can no longer be identified, since it has been changed by the NC language instruction. It no longer corresponds to the method in the database (MMC).	
%4	If software status >= V1.1/5 is used, an additional string that is transferred on method selection (usually cutting tip or tool change) will be output. Usually, the tool identifier, the Duplo number and the active cutting tip number are displayed. This identifies the tool that has triggered the alarm.	

75124 "Channel %1 IPM Interpolator alarm error no.: %2

Error number:

1: "CC_IPM_IPO_CONFIG_ERROR"

This is a general error in the interpolator which should actually never occur.

2: "CC_IPM_IPO_CONFIG_ERROR_ACMARKERAREA"

There is no access to the required marker area. The marker is presumably not fitted. Remedy: check MD N28256 \$MC_MM_NUM_AC_MARKER.

75125 "Channel %1 IPM servo alarm error no.: %2

Error number:

No error numbers have yet been assigned, in other words, the error cannot yet occur.

75129 "Channel %1 IPM General error no.: %2%3%4"

Error number:

1: "CC_IPM_GENERAL_ERROR_NO_MORE_MEMORY"

The free NCK memory is quickly used up when files are written. Remedy: Remove the unrequired parts of the program.

2: "CC_IPM_GENERAL_ERROR_ASUP_NOT_AVAILABLE"

The ASUP specified through \$MC_IPM_ASUP_FILE_NAME could not be logged on. Remedy: Correct program name or load program.

75130 "Axis %1 IPM collision alarm%2%3%4"

Error number:

Variables %2, %3 and %4 have not yet been used.

75131 "Axis %1 IPM belt break alarm%2%3%4"

Error number:

Variables %2, %3 and %4 have not yet been used.

75149 "%1%2%3%4"

This alarm is used for alarm outputs from the NCK-OEM development. The complete text is present in the NCK-OEM software. If an alarm occurs, it will relate to a system error.

	Operator Information	2013-01-28
66	Integrated Process Monitoring IPM, SINUMERIK 840D sl	BI.000225-EN-03